Free Privileged Account Discovery Tool: Identify & secure credentials to stop lateral movement. Download Free

BeyondTrust
  • Products
    Privileged Password Management
    Discover, manage, audit, and monitor privileged accounts
    Password Safe DevOps Secrets Safe
    Endpoint Privilege Management
    Manage privileges on Windows, Mac, Linux, and Unix endpoints
    Windows and Mac Unix and Linux Active Directory Bridge
    Secure Remote Access
    Centrally manage and secure remote access for service desks and vendors
    Remote Support Privileged Remote Access
    BeyondInsight Analytics
    See All Solutions
  • Resources

    Universal Privilege Management

    Our innovative Universal Privilege Management approach secures every user, asset, and session across your entire enterprise.

    Watch Video

    Learn

    Case Studies
    Competitor Comparisons
    Datasheets
    Glossary
    Product Demos
    Whitepapers

    Attend

    Events
    Go Beyond
    Training
    Webinars

    Support

    Changelog
    Professional Services
    Technical Documentation
  • Blog
  • Partners
  • Contact
  • Support
  • Services
  • Training
  • Events
  • Company

Thinking about a Cybersecurity Offensive? Beware the Collateral Damage

October 25, 2019

  • Blog
  • Archive

Over the past several years, as sophisticated nation-state cyberthreats have become a reality, and attacks on critical infrastructure have become commonplace, the concept of offensive cybersecurity has gained more mainstream traction. For almost all organizations—public and private, traditional, defensive cybersecurity has and will always be the only approach. The adoption of an offensive approach, much like a boxer cornering their opponent in the ring, has risks that may be unacceptable, or even illegal, if the punch is not carried out with extreme precision. Actively fighting back is a very risky move in cybersecurity.

As a definition, offensive cybersecurity is a proactive approach that involves launching a cyberattack against adversaries to disrupt or cripple their operations and to deter their future attacks. This approach is sometimes referred to as “hacking back” and relies on determining accurately who is conducting the attacks against you. In general, the targets of cyber offensives are threat actors that have been identified as launching cyberattacks against you or your organization.

As every security professional should know, hacking back is not a trivial exercise, and the approach can be riddled with flaws. Currently, the practice of hacking back remains illegal as it would violate the Computer Fraud and Abuse Act (CFAA), which was first enacted in 1986. However, a bill was recently introduced to U.S. congress that would allow organizations to take offensive actions against their IT network’s intruders.

The largest problem with any offensive cybersecurity strategy is the risk, or perceived risk, of an attack being launch that is a mistake. A full-fledged cyber offensive could inflict devastation comparable in scale to a conventional war or nuclear bomb. This is not farfetched. If an attack occurred within critical infrastructure (CI) or departments like the FAA, we could see poisons in our water supply, massive loss of power, and even manipulation of civil aircraft. These are the risks of any offensive attack at scale.

For instance, imagine a company accidentally targeting CI because they think the attack they are experiencing is originating from them? What if CI was “owned” and used to launch DDOS attacks, such as from the Mirai botnet, and someone decides to hack back against the CI? I think you can see the flaws of this offensive/retaliatory approach. Moreover, the ramifications of an inappropriate “punch” back could warrant an escalation that many organizations are not prepared to deal with technically and legally.

Next, consider the growing use of artificial intelligence (AI)—particularly with regards to IT security automation and orchestration. AI is based on machine learning algorithms—programs that learn based on example and formulate results derived from statistics or other models. While AI lacks a concept of good or bad, it could be programmed with parameters to differentiate between “good” and “bad” behaviors or desired outcomes. The problem is that AI can learn bad behavior, like a young child, and could initiate a very undesirable response—much like a temper tantrum. If AI is allowed to automatically attack back, then a cyberwarfare scenario could escalate quickly beyond control. This is not a doomsday SkyNet scenario, but more like multiple network cards jabbering on a 10base2 (yes, old school) network, drowning out all legitimate communications.

As a real-world example, consider the streaming of video. The desired result is clear—multicast packets to all the targets subscribing to the stream. If a network device in-line corrupts those packets due to a hardware / software fault or another attack, the received packets could be malformed. AI could misconstrue these malformed packets as an attack, or the potential exploitation of a vulnerability. Web content filtering solutions today can easily make this mistake even when something as simple as the source of the video stream is not recognized. Think this sounds crazy? This is actually what signature-based intrusion detection system (IDS) solutions do today. If intrusion prevention system (IPS) engines are empowered with data for automated actions, the result could be to terminate the stream, or worse, attack back against the source.

The scenario of triggered automated responses as outlined above is why even conventional warfare is locked down. Automated threat responses, especially for offensive behaviors, should always be verified and never trusted as is. Otherwise, the implications could be life-threating.

While automation in many forms is helping IT and IT security solve issues of scalability and efficiency, due caution should always be given to technologies that offer full automation; especially of an offensive nature. This level of caution should be even higher for automation technologies and platforms that are governed by AI, where the logic to initiate a response may not even be logically explainable. And, some highly sensitive areas of decision-making are probably always best left to humans—as imperfect as we are.

In reality, the Internet is fragile—using it for a cyber offensive or for hack back initiatives is a terrible idea. Actions and reactions can rapidly spiral out of control, and AI with automation could make it substantially worse. In this security professional’s opinion, stick with the best defensive IT security technologies and avoid the hype, legal issues, and potential harm of taking an offensive cybersecurity posture. Leave the offensive approach to your government and its cybersecurity programs.

Additional Reading

What Public Disclosures are Revealing about Cyber War Threats (blog)

Mapping BeyondTrust Solutions to NERC Critical Infrastructure Protection (CIP) (white paper)

Four Pillars to Securing UK Critical National Infrastructure (white paper)

Morey J. Haber

Chief Technology Officer and Chief Information Security Officer at BeyondTrust

Morey J. Haber is Chief Technology Officer and Chief Information Security Officer at BeyondTrust. He has more than 25 years of IT industry experience and has authored four Apress books: Privileged Attack Vectors (2 Editions), Asset Attack Vectors, and Identity Attack Vectors. In 2018, Bomgar acquired BeyondTrust and retained the BeyondTrust name. He originally joined BeyondTrust in 2012 as a part of the eEye Digital Security acquisition. Morey currently oversees BeyondTrust strategy for privileged access management and remote access solutions. In 2004, he joined eEye as Director of Security Engineering and was responsible for strategic business discussions and vulnerability management architectures in Fortune 500 clients. Prior to eEye, he was Development Manager for Computer Associates, Inc. (CA), responsible for new product beta cycles and named customer accounts. He began his career as Reliability and Maintainability Engineer for a government contractor building flight and training simulators. He earned a Bachelor of Science degree in Electrical Engineering from the State University of New York at Stony Brook.

Stay Up To Date

Get the latest news, ideas, and tactics from BeyondTrust. You may unsubscribe at any time.

I agree to receive product related communications from BeyondTrust as detailed in the Privacy Policy, and I may manage my preferences or withdraw my consent at any time.

You May Also Be Interested In:

Webcasts | February 09, 2021

Customer Webinar: Remote Support 21.1 Released!

Webcasts | February 24, 2021

Your PAM 2021 Blueprint: Securing Privileged Accounts for On-Premises and Cloud Assets

Whitepapers

Evolving Privileged Identity Management (PIM) In The 'Next Normal'

BeyondTrust Logo
  • Facebook
  • Twitter
  • LinkedIn

Keep up with BeyondTrust

I agree to receive product related communications from BeyondTrust as detailed in the Privacy Policy, and I may manage my preferences or withdraw my consent at any time.

Customer Support
Contact Sales

Products

  • Endpoint Privilege Management
  • Password Management
  • Privileged Remote Access
  • DevOps Secrets Safe
  • Remote Support

Resources

  • Blog
  • Case Studies
  • Competitor Comparisons
  • Datasheets
  • Glossary
  • Videos
  • Webcasts
  • Whitepapers

About

  • Company
  • Careers
  • Contact
  • Events
  • Leadership Team
  • Partner Program
  • Press

Languages

  • English
  • German
  • French
  • Spanish
  • Korean
  • Portuguese
  • Japanese
  • Privacy
  • Security
  • Manage Cookies
  • WEEE Compliance

Copyright © 1999 — 2020 BeyondTrust Corporation. All rights reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust Corporation is not a chartered bank or trust company, or depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.